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Abstract— The initial step of vessel segmentation in 3D is
the detection of vessel centerlines. The proposed methods in
literature are either dependent on vessel radius and/or have
low response at vessel bifurcations. In this paper we propose a
3D tubular structure detection method that removes these two
drawbacks. The proposed method exploits the observations on
the eigenvalues of the Hessian matrix as is done in literature, yet
it employs a direct 3D vector field singularity characterization.
The Gradient Vector Flow vector field is used and the eigen-
values of its Jacobian are exploited in computing a parameter
free vesselness map. Results on phantom and real patient data
exhibit robustness to scale, high response at vessel bifurcations,
and good noise/non-vessel structure suppression.

I. INTRODUCTION

Segmentation of tubular structures, such as vessels,
bronchi, etc., is an important component of medical image
analysis. It is widely used in medical diagnosis of vessel
stenosis, inflammation of vasculature and any defects in
vessel shape and structure. Segmentation of tubular structures
is composed of two major components: Centerline detection
and surface segmentation. Although there are methods that
address these two components jointly, the general approach
is to use the detected centerlines as the apriori informa-
tion about the tubular structure locations. Consequently, the
correct centerline detection is the prerequisite for correct
segmentation of tubular structures.

A significant portion of the methods proposed in the litera-
ture for centerline detection, relies on the observation that the
orthogonal cross sections of tubular structures in 3D exhibit
a 2D symmetric/asymmetric Gaussian profile while the 1D
profile orthogonal to this cross section is approximately
constant. This corresponds to having negative 1D second
derivatives on the centerline, along the directions perpen-
dicular to it, and vanishing derivatives along the centerline.
As the eigenvalues of the Hessian of a 3D scalar function,
which is a symmetric 3 × 3 real matrix, corresponds to the
1D second derivatives along the corresponding eigenvectors,
several measures derived from these eigenvalues have been
proposed. The general pattern of eigenvalues of the Hessian
is λ3 ≈ λ2 << λ1 ≈ 0.

Lorenz et al. defined line-structureness in terms of the
ratios of eigenvalues of the Hessian computed at the es-
timated scale [1]. Sato et al. used the second derivatives
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of a set of multiscale Gaussian filters to detect curvilinear
structures and to penalize high intensity on vessel walls [2].
Frangi et al., in their widely popular approach, proposed a
vesselness measure to detect tubular structures by using the
eigenvalus of the Hessian [3]. They classified the local struc-
ture according to the eigenvalue patterns and defined their
vesselness measure in terms of three exponential functions
of eigenvalues, to discriminate background, blob-like, plate-
like and line-like structures. Krissian et al. presented another
multiscale approach based on the eigensystem of the Hessian
to extract vessels and directly estimated the radius of the
tubular structures [4]. All of these methods suffer from scale
dependence, hence requires a multi-scale approach or scale
estimation procedures as well as sensitivity parameters that
need to be set carefully. To remove the scale dependence,
Bauer and Bischof used the Jacobian of a vector field instead
of the Hessian where the vector field is computed by using
the Gradient Vector Flow (GVF) [5] algorithm [6].

Methods other than Hessian based approaches have also
been proposed. Aylward and Bullitt extracted an intensity
ridge map representing the vessel medial axis [7]. Zana and
Klein used morphology operators to extract bright regions
including the vessels and exploited their differential shape
characteristics to identify the vessels [8]. Qian et al. proposed
to use local pixel intensity distributions to detect vessels
[9]. They observed characteristic intensity distributions on
circles (for 2D) centered at vessel centerlines. Li and Yezzi
represented a 3D curve in 4D by including the vessel
width and formulated the vessel detection and segmentation
problem jointly as a variational minimization problem in 4D
[10]. However, these approaches have not yet gained wide
popularity partly due to computational costs and partly due
to the intuition and power that the Hessian based methods
provide.

In this work, we adopted the use of the GVF vector field
to represent the structures in I(r), which provides scale inde-
pendence, but defined our vesselness measure based on direct
3D vector field singularity characterization using a fractional
anisotropy based on measure together with the vector field
divergence. The method is comparatively tested on phantom
and real patient datasets. The proposed approach is parameter
free and has stronger response at vessel bifurcations.

II. METHOD
A. Bauer and Bischof’s Method

Bauer and Bischof proposed a method to remove the scale
dependence of Hessian based approaches while preserving
the rest of the theory of Frangi et al. intact [6]. Observing
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that the Hessian of a scalar function, I(r), is the Jacobian
of ∇I , ie. the gradient vector field, they proposed to build
a vector field, v(r) that coincides with ∇I near vessel
centers and use the Jacobian of v(r) instead of the Hessian
of I(r). More specifically, they used the Gradient Vector
Flow (GVF) [5], computed using an edgemap of I(r), as
v(r). The conventional methods to calculate the Hessian of
an image require multiscale Gaussian filter convolutions, so
scale problem arises while detecting tubular structures. Since
the Gradient Vector Flow (GVF) computation relies on an
edgemap only, it circumvents the scale dependence problem
of Hessian based approaches. The GVF vector field is almost
curl-free near vessel centers and thus its Jacobian has real
eigenvalues that approximate the eigenvalues of the Hessian
of I(r).

Bauer et al. applied the vesselness measure defined in [3]
and showed good performance on phantom data near vessel
centers. However i) their method requires an approximate
detection of structures, as the GVF vector field is known to
be approximately curl-free in the vicinity of structures, but
not in general, thus its Jacobian is not guaranteed to have
real eigenvalues in general, unlike the Hessian of I(r), ii) the
vesselness measure employed requires sensitivity parameters
to be set for effective performance, iii) it has weak response
at vessel bifurcation points (as also in [3]).

B. The Proposed Method

The proposed method is based on a robust and parameter
free characterization of the singularities of the computed
GVF vector, using the eigenvalues of the Jacobian of the
GVF vector field which was recently proposed to be used
with Frangi et al.’s vesselness measure [3], [6]. It relies on
masking with discriminant maps to identify the reliable GVF
vector field regions, followed by joint singularity detection
and symmetry analysis via the divergence maps and a mod-
ified version of the fractional anisotropy adopted from the
DT-MRI literature.

Let v(x, y, z) = [v1(x, y, z) v2(x, y, z) v3(x, y, z)]T be
the 3D GVF vector field computed as described in [5]. Then,

Jv =




∂xv1 ∂xv2 ∂xv3
∂yv1 ∂yv2 ∂yv3
∂zv1 ∂zv2 ∂zv3



 (1)

= [e1 e2 e3]




λ1 0 0
0 λ2 0
0 0 λ3



 [e1 e2 e3]
T (2)

where eigenvalues, λ1 > λ2 > λ3’s, are the roots of the
characteristic equation. The initial masking filter selects the
points where the discriminant of the characteristic equation
is non-negative which guarantees that λi ∈ % for i = 1, 2, 3.
The proposed vesselness measure, ψ, uses the divergence
map and the fractional anisotropy as follows:

F =

√
(λ1 − λ2)2 + (λ1 − λ3)2 + (λ2 − λ3)2

λ2
1 + λ2

2 + λ2
3

∈ [0, 2]

(3)

D =
∇ · v

max(∇ · v) (4)

f = [D F ] (5)

ψ =

{ 1
||f−[−1 1]||2 λ2 ≤ 0

0 o.w.
(6)

where D is the divergence map normalized with the maxi-
mum absolute divergence in the regions with λ2 ≤ 0 and F
is the modified fractional anisotropy measure (∈ [0, 2]) which
represents the structure of the singularity. F = 0 corresponds
to a perfectly symmetric point singularity (λ1 ≈ λ2 ≈ λ3),
F = 1 corresponds to a linear singularity as is expected on
the centerlines of the tubular structures (λ1 ≈ λ2 < λ3 ≈ 0)
and F = 2 corresponds to a sheetlike singularity (λ1 < λ2 ≈
λ3 ≈ 0). D, on the other hand is an indicator of structureness
and is expected to be close to −1 near the centerlines of
the tubular structures since diffused gradient vectors tend to
converge on these singularity points. Hence the vesselness
measure, ψ is defined as the inverse of euclidean distance
between the feature vector f and [−1 1].

III. EXPERIMENTS

The experiments were conducted on mathematical phan-
tom data with three different geometries different datasets
and a real patient dataset. The 151 × 151 × 151 phantom
datasets were generated in MATLAB. All phantom structures
are designed to have a Gaussian cross-sectional profile with
a peak intensity value of 255 on the centerline and σ =
r/3 where r represents the assigned vessel radius. The
value of phantom data is set to 0 in regions outside the
vessel. The phantom datasets represent a linear structure with
linearly increasing radius r = [20, 60], a linear structure with
sinusoidally varying radius with a mean radius of 40 and a
T-junction with r = 40. The real CT dataset was taken from
the training datasets of MICCAI 2007 3D Segmentation in
Clinic: A Grand Challenge volumetric image database [11].
Pixel spacing is 0.9375mm between axial slices with an
inter-slice distance of 1.5mm. The patient was scanned with
a Inversion Recovery Prepped Spoiled Grass sequence on
a variety of scanners including GE and Siemens, both 1.5
Tesla. The liver was masked from background by applying
a manual segmentation mask on the CT scan.

Figure 1 shows the vesselness maps computed by the
scale independent method proposed in [6], the results of
the proposed vesselness map and the data itself for both
phantom and real patient datasets. Presented results are taken
from central axial slice. The pixel values are not scaled.
The proposed method has a thinner response than the one
proposed in [6], thus can locate the vessel centerlines with
higher accuracy. Our maps have lower response outside
the vessels as can be seen in Figure 1.b in comparison to
Figure 1.a. Its response at vessel bifurcations is stronger as
demonstrated in Figure 1.h in comparison to Figure 1.g. The
scale independence property of [6] is preserved as shown
in Figure 1.e. The real patient experiment, Figure 3, clearly
demonstrates the robustness of our method to noise and non-
vessel structures.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Fig. 1. Comparative results of phantom data experiments. The left column shows the results of the method proposed in [6], the middle column shows
our method’s results and the right column depicts the geometries of the phantom data and the real data used. The gray scale corresponds to the computed
vesselness measure. (a-c) Straight tubular structure with sinusoidally varying radius, (d-f) Straight tubular structure with linearly increasing radius, (g-i)
T-junction between two tubular structures.

(a) (b)
Fig. 2. The vesselness map proposed in [3], applied to (a) the same real patient dataset as in Figure 3.c, (b) the same T-junction phantom dataset as in
Figure 1.i.

IV. DISCUSSION AND CONCLUSION

Our method exploits the idea of using a vector field
computed by GVF, initially proposed by Bauer and Bischof
in [6], which provides scale independence. The response
falls off slightly when the diameter of the vessel changes
but this is an expected behaviour for most lineness filters
[12]. Since the vesselness maps are computed using the
GVF vector field, this variation is independent of the vessel
radius and is due to the radius variations only. An important

property of the proposed method is its higher noise/non-
vessel structure suppression in comparison to [6]. This is
best demonstrated on the real patient dataset experiment
where the previously proposed GVF based method has high
response at non-vessel regions that practically masks the
vessels. The proposed method also overcomes the weak
response of various vesselness measures including Frangi’s
[3] at bifurcation points. Since bifurcation of vasculature will
also be a singularity point of the vector field, our method uses
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(a) (b) (c)

(d) (e) (f)
Fig. 3. Comparative results of different slices from the real data experiment. The left column shows the results of the method proposed in [6], the middle
column shows our method’s results and the right column depicts the real data used. The gray scale corresponds to the computed vesselness measure.

the resultant high divergence (D) to compensate for the low
F values (≈ 0.7). Therefore, the feature vector f turns out
to be as close to [−1 1] as non-bifurcating centerline points
on vessel centerline. The thinner response of the proposed
method provides better centerline localization.

A comparison with the Frangi et al.’s Hessian based
method [3] in real patient dataset, as depicted in Figure 2,
shows that the proposed method is capable of detecting ves-
sels. We would like to emphasize the scale dependence of the
Hessian based approach in computing the partial derivatives
of the scalar data and its parameter dependence. The Frangi
et al.’s method requires three sensitivity parameters of the
exponential functions to be set for proper operation. It also
has low response at vessel bifurcations as seen in Figure 2.

As a conclusion, we presented a new method based on
vector field singularity analysis that can enhance the response
at bifurcation points which is a common problem faced
on other tube detection filters. Our method also adresses
the size-scale dependency problem that commonly occur in
Hessian based approaches, since it results in a thin and
pruned response irrespective of size and structure of tubes.
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